Cambridge IGCSE[™] | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | # 353178260 #### **CO-ORDINATED SCIENCES** 0654/52 Paper 5 Practical Test May/June 2022 2 hours You must answer on the question paper. You will need: The materials and apparatus listed in the confidential instructions #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do not use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. #### **INFORMATION** - The total mark for this paper is 60. - The number of marks for each question or part question is shown in brackets []. - Notes for use in qualitative analysis are provided in the question paper. | For Examiner's Use | | | |--------------------|--|--| | 1 | | | | 2 | | | | 3 | | | | 4 | | | | 5 | | | | 6 | | | | Total | | | This document has 20 pages. Any blank pages are indicated. 1 You are going to investigate the movement of molecules through a cell membrane. You are provided with some dialysis (Visking) tubing that can act like a cell membrane. This tubing allows small molecules to pass through it but not large molecules. # (a) Procedure - Take a piece of dialysis tubing. It is closed at one end with a knot. - Rub gently at the end without the knot to open the tube. - Using a syringe, carefully add 2 cm³ of iodine solution into the dialysis tubing. - Tie the open end with a knot to enclose the iodine solution and make a bag. - Thoroughly rinse the outside of the bag with water. - (i) Record in Table 1.1 for time t = 0: - the colour of the iodine solution in the bag - the colour of the starch solution in the beaker. Table 1.1 | time t | colour of solution | | | | |-----------|--------------------|--------|--|--| | / minutes | bag | beaker | | | | 0 | | | | | | 1 | | | | | | 2 | | | | | | 3 | | | | | | 4 | | | | | | 5 | | | | | [1] #### (ii) Procedure Place the bag containing iodine solution into the beaker of starch solution as shown in Fig. 1.1. Fig. 1.1 - Start the stop-clock. - Every minute for five minutes, carefully lift the bag above the starch solution to observe the colour in the bag and the colour in the beaker. Return the bag to the beaker of starch solution after each reading. Record all colours in Table 1.1. [3] (b) Iodine solution is a test for starch. Dialysis tubing allows small molecules to pass through it but not large molecules. Explain your observations for the colour of the solution inside the bag and the colour of the solution in the beaker after five minutes. Use the information provided and your results from Table 1.1. Include ideas about the size of molecules in your answer. (c) Suggest why a syringe is used in the procedure instead of a measuring cylinder. [1] (d) Suggest why the dialysis tubing is rinsed in the procedure. [1] [Total: 12] 4 | (e) | At lower temperatures, molecules move more slowly. | | |-----|--|-----| | | A student does the procedure at a lower temperature. | | | | Suggest how this affects the results. | | | | | [1] | | (f) | Starch is broken down into reducing sugar by the enzyme amylase. | | | | State the name of the reagent used to test for the presence of reducing sugar. | | | | Include the colour observed for a positive result. | | | | reagent | | | | observation | | | | | [2] | 5 # **BLANK PAGE** **2** Fig. 2.1 shows a magnified section through part of a leaf. Fig. 2.1 | In the box, make a large pencil drawing of only the cell labelled C and the 5 cells touching Do not draw any other cells. | | | | | |--|--|--|--|--| [3] | (b) | (i) | The distance between the points A and B in Fig. 2.1 shows the thickness of the leaf. | |-----|-------------------|--| | | | Draw a line between points A and B in Fig. 2.1. | | | | Measure the length of line AB in Fig. 2.1. | | | | Record this length in millimetres to the nearest millimetre. | | | | length of line AB in Fig. 2.1 = mm [1] | | | (ii) | The thickness of the actual leaf at AB is 0.75 mm. | | | | Calculate the magnification <i>m</i> of the photograph. | | | | Use the equation shown. | | | | $m = \frac{\text{length of line AB in Fig. 2.1}}{\text{thickness of the actual leaf at AB}}$ | $m = \dots $ [1] | | (c) | | m = | | (c) | not | acher states that the thickness of the actual leaf measured between points A and B does | | (c) | not
Sug | eacher states that the thickness of the actual leaf measured between points A and B does show the thickness of the whole leaf. Igest why the teacher is correct. Ite how you can improve confidence in the measurement of the thickness of the whole | | (c) | Starleaf | eacher states that the thickness of the actual leaf measured between points A and B does show the thickness of the whole leaf. Igest why the teacher is correct. Ite how you can improve confidence in the measurement of the thickness of the whole | | (c) | Starleaf | eacher states that the thickness of the actual leaf measured between points A and B does show the thickness of the whole leaf. Igest why the teacher is correct. Ite how you can improve confidence in the measurement of the thickness of the whole . | | (c) | Starleaf sug | eacher states that the thickness of the actual leaf measured between points A and B does show the thickness of the whole leaf. Igest why the teacher is correct. Ite how you can improve confidence in the measurement of the thickness of the whole . Igestion | | (c) | Starleaf sug | eacher states that the thickness of the actual leaf measured between points A and B does show the thickness of the whole leaf. Igest why the teacher is correct. Ite how you can improve confidence in the measurement of the thickness of the whole does not be actual leaf measured between points A and B does show the thickness of the whole does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be | | (c) | Starleaf sug | acher states that the thickness of the actual leaf measured between points A and B does show the thickness of the whole leaf. Igest why the teacher is correct. Ite how you can improve confidence in the measurement of the thickness of the whole . Igestion | | (c) | Starleaf sug | eacher states that the thickness of the actual leaf measured between points A and B does show the thickness of the whole leaf. Igest why the teacher is correct. Ite how you can improve confidence in the measurement of the thickness of the whole does not be actual leaf measured between points A and B does show the thickness of the whole does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be actual leaf measured between points A and B does not be | 9 # **BLANK PAGE** **3** You are going to investigate the rate of reaction when calcium carbonate reacts with dilute hydrochloric acid. #### (a) (i) Procedure The apparatus is set up as shown in Fig. 3.1. Fig. 3.1 - Remove the stopper from the conical flask. - Use a 50 cm³ measuring cylinder to place 25 cm³ of dilute hydrochloric acid into the conical flask. - Add all of the calcium carbonate to the conical flask and quickly replace the stopper. Immediately start the stop-watch. - Record in Table 3.1 the volume of gas in the inverted measuring cylinder every 60 seconds for 300 seconds. Table 3.1 | time/s | volume of gas/cm ³ | |--------|-------------------------------| | 0 | | | 60 | | | 120 | | | 180 | | | 240 | | | 300 | | | [4] | |-----| | | (ii) State the name of a piece of apparatus suitable for measuring the volume of dilute hydrochloric acid more accurately. [1] (iii) Suggest another method of collecting and measuring the volume of gas. | (iv) | Suggest which reagent, calcium carbonate or dilute hydrochloric acid, is in excess. | |---------|--| | | Give a reason for your answer. | | | | | | [1 | | (v) | Suggest why the volume of gas you collected in this experiment is less than the volume of gas expected. | | | | | | [1 | | (b) (i) | On the grid, plot a graph of volume of gas (vertical axis) against time. | | | | [3] (ii) Draw the line of best-fit which shows how the volume of gas changes with time. [1] | (iii) | A faster reaction has a steeper line than a slower reaction. | |-------|--| | | When the reaction is finished, there is no more increase in the volume of gas given off. | | | Describe how the rate of the reaction changes during the course of this reaction. | | | Explain how your graph shows these changes. | | | | | | | | | | | | [2] | | | [Total: 14] | 4 You are going to identify the ions present in solution R. # (a) Procedure - Place 2 cm depth of solution R into each of four test-tubes. - Do tests 1 to $\dot{4}$ as shown in Table 4.1 on the separate samples of solution **R**. - Record your observations in Table 4.1. # Table 4.1 | | test | observations | |---|---|--------------| | 1 | add a few drops of aqueous ammonia | | | | add excess aqueous ammonia | | | 2 | add a few drops of aqueous sodium hydroxide | | | | add excess aqueous sodium hydroxide | | | 3 | add 1 cm depth of dilute nitric acid and 1 cm depth of aqueous barium nitrate | | | 4 | add 1 cm depth of dilute nitric acid and 1 cm depth of aqueous silver nitrate | | | L | | [. | 4] | |-----|---|---------|----| | (b) | State the two ions present in solution I | R. | | | | | [| 2] | | | | [Total: | 6] | 5 You are going to investigate the resistance of different combinations of identical lamps. The circuit shown in Fig. 5.1 has been set up for you. This is circuit 1. Fig. 5.1 (a) On Fig. 5.1, draw the symbol for a voltmeter connected to measure the potential difference between point **X** and point **Y**. [2] # (b) Procedure - Connect the voltmeter into circuit 1 to measure the potential difference between X and Y. - Close the switch. - Record in Table 5.1 the potential difference *V* and the current *I*. - Open the switch. Table 5.1 | circuit | V/V | I/A | R/Ω | |---------|-----|-----|------------| | 1 | | | | | 2 | | | | | 3 | | | | [2] # (c) Procedure - Disconnect the voltmeter. - Connect the circuit as shown in Fig. 5.2. This is circuit 2. Fig. 5.2 - Reconnect the voltmeter to measure the potential difference between X and Y. - Close the switch. - Record in Table 5.1 the potential difference *V* and the current *I*. - Open the switch. [2] # (d) Procedure - Disconnect the voltmeter. - Connect the circuit as shown in Fig. 5.3. This is circuit 3. Fig. 5.3 - Reconnect the voltmeter to measure the potential difference between X and Y. - Close the switch. - Record in Table 5.1 the potential difference V and the current I. - Open the switch. [2] **(e)** Calculate and record in Table 5.1 the total resistance *R* in each circuit. Use the equation shown. $$R = \frac{V}{I}$$ [2] © UCLES 2022 0654/52/M/J/22 **[Turn over** [Total: 13] | (f) | A student suggests that if each lamp has the same resistance, the resistance R in circustance because the resistance R in circuit 2 . | uit 3 | |-----|---|--------------| | | Two quantities can be considered equal, within the limits of experimental error, if their value are within 10% of each other. | ues | | | State if your results support the student's suggestion. | | | | Justify your statement by doing a calculation using appropriate values of R from Table 5.1 | ١. | | | | | | | | | | | statement | | | | justification | | | | | | | | | | | | | [2] | | (g) | Another student finds that in their circuit 3, the lamps do not light up. | | | | Suggest one observation that the student makes to check if one of the lamps is broken. | | | | | | | | | [1] | **17** # **BLANK PAGE** 6 Plan an experiment to investigate how the area of the water surface in a beaker affects the rate of cooling of hot water in the beaker. Fig. 6.1 shows the area of the water surface. Fig. 6.1 You are provided with: - a supply of hot water - a set of different sized beakers made from the same material, but with different areas of water surface. The beakers are lagged with insulation on their sides and bases. You may use any other common laboratory apparatus. #### You are not required to do this investigation. Include in your plan: - any other apparatus needed - a brief description of the method, including what you will measure and how you will make sure your measurements are accurate - the variables you will control - a results table to record your measurements (you are **not** required to enter any readings in the table) - how you will process your results to draw a conclusion. You may include a labelled diagram if you wish. |
 | |------| | | | | | | |
 | | | | [7] | #### NOTES FOR USE IN QUALITATIVE ANALYSIS #### **Tests for anions** | anion | test | test result | |---|---|--| | carbonate (CO ₃ ²⁻) | add dilute acid | effervescence, carbon dioxide produced | | chloride (C <i>l</i> ⁻) [in solution] | acidify with dilute nitric acid, then add aqueous silver nitrate | white ppt. | | bromide (Br ⁻) [in solution] | acidify with dilute nitric acid, then add aqueous silver nitrate | cream ppt. | | nitrate (NO ₃ ⁻)
[in solution] | add aqueous sodium hydroxide, then aluminium foil; warm carefully | ammonia produced | | sulfate (SO ₄ ²⁻)
[in solution] | acidify, then add aqueous barium nitrate | white ppt. | # Tests for aqueous cations | cation | effect of aqueous sodium hydroxide | effect of aqueous ammonia | |--|---|---| | ammonium (NH ₄ ⁺) | ammonia produced on warming | _ | | calcium (Ca ²⁺) | white ppt., insoluble in excess | no ppt., or very slight white ppt. | | copper(II) (Cu ²⁺) | light blue ppt., insoluble in excess | light blue ppt., soluble in excess, giving a dark blue solution | | iron(II) (Fe ²⁺) | green ppt., insoluble in excess | green ppt., insoluble in excess | | iron(III) (Fe ³⁺) | red-brown ppt., insoluble in excess | red-brown ppt., insoluble in excess | | zinc (Zn ²⁺) | white ppt., soluble in excess, giving a colourless solution | white ppt., soluble in excess, giving a colourless solution | #### **Tests for gases** | gas | test and test result | |-----------------------------------|----------------------------------| | ammonia (NH ₃) | turns damp red litmus paper blue | | carbon dioxide (CO ₂) | turns limewater milky | | chlorine (Cl ₂) | bleaches damp litmus paper | | hydrogen (H ₂) | 'pops' with a lighted splint | | oxygen (O ₂) | relights a glowing splint | #### Flame tests for metal ions | metal ion | flame colour | |--------------------------------|--------------| | lithium (Li ⁺) | red | | sodium (Na+) | yellow | | potassium (K+) | lilac | | copper(II) (Cu ²⁺) | blue-green | Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.